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This study examines the impacts of population size, population structure, and consumption level on carbon
emissions in China from1978 to 2008. To this end,we expanded the stochastic impacts by regression on population,
affluence, and technologymodel andused the ridge regressionmethod,which overcomes thenegative influences of
multicollinearity among independent variables under acceptable bias. Results reveal that changes in consumption
level and population structure were the major impact factors, not changes in population size. Consumption level
and carbon emissions were highly correlated. In terms of population structure, urbanization, population age, and
household size had distinct effects on carbon emissions. Urbanization increased carbon emissions,while the effect of
age acted primarily through the expansion of the labor force and consequent overall economic growth. Shrinking
household size increased residential consumption, resulting in higher carbon emissions. Households, rather than
individuals, are a more reasonable explanation for the demographic impact on carbon emissions. Potential social
policies for low carbon development are also discussed.

© 2012 Elsevier Inc. All rights reserved.
1. Introduction

During the past 200 years, global population, global income (gross
domestic product), and carbon emissions have increased 6, 70, and 20
times, respectively (Jiang and Hardee, 2009). The history of most
developed countries shows that in the development process, industry
accounts for the largest proportion of carbon emissions. However,
recent statistics reveal that since the 1990s, the contribution of
residential energy consumption in some developed countries to carbon
emissions has exceeded that of industrial sectors. Therefore, the
impacts of population growth and associated residential consump-
tion on carbon emissions have attracted increasing research interest
(Bin and Dowlatabadi, 2005; Druckman and Jackson, 2009; Weber
and Adriaan, 2000).

Clearly identifying the relationship between population and carbon
emissions is highly challenging primarily because of the wide-ranging
effects of population on carbon emissions. These effects usually exert
indirect influence over consumption, production, technology, and
trade, among others. In terms of population characteristics, almost all
important demographic factors, including population size, structure,
quality, distribution, and migration, constantly change, thereby impos-
ing complicated and variable effects on carbon emissions. Studies have
thus far concentrated on the relationship between population growth
and emission increase, aswell as on the impacts of population structure,
including age structure, urbanization level, regional distribution, and
household composition, on carbon emissions.
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The approaches to studying the relationship between population
and carbon emissions can be categorized into two: investigating the
causalities and mechanisms of interaction between population and
carbon emissions, andquantitatively evaluating the impacts of population
growth on carbon emission increase. Birdsall (1992) summarized two
principal mechanisms through which population growth in developing
countries contributes to greenhouse gas emissions. The first is the effect
of large populations on fossil fuel consumption—an effect that stems
from the increased energy demand for power generation, industry,
and transport. The second mechanism is the effect of population
growth-related emissions on deforestation. The author concluded
that reductions in population growth matter, but are not the key
factor in leveling off carbon emissions. Knapp and Mookerjee (1996)
discussed the nature of the relationship between global population
growth and CO2 emissions by conducting a Granger causality test on
annual data for 1880–1989. The results suggest no long-termequilibrium
relationship, but imply a short-term dynamic relationship between CO2

emissions and population growth.
The IPAT identity (Ehrlish and Holdren, 1971) has been extensively

used in thequantitative evaluation of the effects of population growth on
carbon emission increase. According to the principle of the formula and
its stochastic form, the stochastic impacts by regression on population,
affluence, and technology (STIRPAT) model, the main driving forces
behind environmental impact (I) are population (P), affluence (A),
and technology (T). Researchers typically assess the impact of population
on carbon emissions by altering population size while keeping other
variables constant. Shi (2003) examined 1975–1996 data on 93 countries
using the IPAT model and found that the impact of population change
on carbon emissions is considerably more pronounced in developing
countries than in developed nations. The author also determined that
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the elasticity of emissions with respect to global population change
was 1.42. Cole and Neumayer (2004) and Rosa et al. (2004) also
measured the impact of population on carbon emissions using the
IPAT model, and found that the elasticities of emissions in relation to
population were 0.98 and 1.02, respectively. Wei (2011) discussed
the role of technology in the STIRPAT model, and argued that the
different functional forms of STIRPAT can explain the differences
among estimates in studies on the environmental impacts of population
and affluence.

The effects of population on carbon emissions are commonly
embodied in production and consumption behaviors, which are
closely tied to population size and population structure. Satterthwaite
(2009) investigated the CO2 emission levels in various nations for the
periods 1950–1980 and 1980–2005. The results show little association
between rapid population growth and high emission increase because
nations with very low emissions per capita are mostly those with the
highest population growth rates. Jiang and Hardee (2009) argued that
consumption and production patterns among various population
groups differ. In almost all climate models, however, population size is
the only demographic variable considered. The assumption behind this
treatment is that each individual in a population shares the same
production and consumption behavior, but this assumption may be
inaccurate andmisleading. Hence, payingmore attention to the variables
of population structure is necessary in investigating the impact of
population on carbon emissions.

Researchers have closelymonitored urbanization levels because these
are highly relevant to residential consumption scale and consumption
structure. Urbanization generally affects carbon emissions in three ways.
First, the use of energy in production is concentrated primarily in cities,
and residential consumption level increases in line with urbanization.
Both situations increase energy demand, resulting in carbon emission
increase, given that the energy structure remains the same. Second, the
requirements for infrastructure and dwelling houses grow along with
urbanization, increasing the demand for building materials (especially
cement products), which are important sources of carbon emissions.
Third, urbanization involves the conversion of grasslands andwoodlands,
these land-use changes increase carbon emissions. Poumanyvong and
Kaneko (2010) empirically investigated the effects of urbanization
on energy use and CO2 emissions. In the investigation, the authors
considered different development stages using the STIRPAT model,
as well as a balanced panel dataset that covers 1975–2005 and includes
99 countries. The findings suggest that the impact of urbanization on
carbon emissions is positive for all income groups, but that this effect is
more pronounced in themiddle-incomegroup than in the other income
groups. Pachauri and Jiang (2008) compared the household energy
transitions in China and India since the 1980s by analyzing aggregate
statistics and nationally representative household surveys. The authors
revealed that comparedwith rural households, the urban households in
both nations consumed a disproportionately large share of commercial
energy and were much further along in the transition to modern
energy. Satterthwaite (2009) considered the implications of population
growth and urbanization for climate change between 1980 and 2005.
The author concluded that the increasing number of urban consumers
and their consumption levels, not population growth, drive the increase
in greenhouse gas emissions.

Studies on the relationship between age structure and carbon
emissions focus on the accelerated global aging process. Research in
this area is still at its infancy. Fan et al. (2006) analyzed the impact of
population, affluence, and technology on the total CO2 emissions of
countries at different income levels at the global scale over the period
1975–2000. The results show that population age (15–64 years) has
less impact on CO2 emissions than do population size, affluence, and
technology. Dalton et al. (2008) incorporated population age structure
into an energy–economic growth model with multiple dynasties of
heterogeneous households to estimate and compare the effects of aging
populations and technical change on the baseline paths of US energy
use and CO2 emissions. The authors showed that an aging population
reduces long-term emissions by almost 40% in a low-population
scenario, and that the effects of the aging process on emissions can
be as large as, or larger than, those of technical change in some cases,
given a closed economy, fixed substitution elasticity, and fixed labor
supply over time.

The effect of changes in household size on carbon emissions is
another research focus. Given a fixed population size, a change in the
number of households due to a change in household size can influence
consumption scale and consumption structure, thereby significantly
affecting carbon emissions. Thus far, there is no commonly accepted
standard for defining household types in terms of environmental
influence, and the effect of changes in household size on carbon emissions
remains uncertain. Dalton et al. (2007) incorporated household size into
the population–environment–technology model to simulate economic
growth, as well as changes in the consumption of various goods, direct
and indirect energy demand, and carbon emissions over the next
100 years. Jiang and Hardee (2009) discussed the impact of shrinking
household size on carbon emissions and argued that households, rather
than individuals in a population, should be used as the variable in
analyzing demographic impact on emissions. This approach is favorable
considering that households are the units of consumption, and possibly
also the units of production in developing societies.

China is currently at a demographic turning point, i.e., changing
from an agricultural into an urban society, from a young society to an
old one, and from a society attached to land to a more floating one
(Peng, 2011). Population dynamics and changes in consumption
patterns have influenced and will undoubtedly continue to influence
China's energy use and consequent carbon emissions. Examining
these issues will facilitate improvements in decision making for low
carbon development. In this study, therefore, we incorporate population
structure (age structure, urbanization level, and household size) into the
STIRPAT model to examine the impacts of population size, population
structure, and consumption level on carbon emissions. By doing so,
we hope to more completely and accurately reflect the impacts of
population change on carbon emissions. To overcome the negative
influences of multicollinearity among independent variables, we use
the ridge regression method to estimate the coefficients of the model.
As an empirical case study, the impacts of population and consumption
on emissions in China from 1978 to 2008 are quantitatively assessed
and analyzed. Corresponding policy suggestions for energy conserva-
tion and emission reduction in China are proposed.

2. Model

The IPAT identity (Ehrlish and Holdren, 1971) is an equation that
is commonly used to analyze the impacts of human behavior on
environmental pressure. The equation is expressed as

I ¼ PAT; ð1Þ

where I represents environmental impact, P represents population, A
stands for affluence, and T denotes technology.

The IPAT identity is an accounting model, in which one term is
derived from the values of the three other terms. The model requires
data on only any three of the four variables for one or a fewobservational
units, and it can only be used to measure the constant proportional
impacts of the independent variables on the dependent variable. To
overcome this limitation, Dietz and Rosa (1994) established the STIRPAT
model by reformulating the IPAT identity into stochastic form:

I ¼ aPbAcTde; ð2Þ

where I, P, A, and T have the same definitions as in the IPAT identity; a, b,
c, and d are coefficients; and e is a residual term. In this reformulation,
data on I, P, A, and T can be used to estimate a, b, c, d, and ewith statistical
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regression methods. The reformulated version can convert the IPAT
accounting model into a general linear model, in which statistical
methods can be applied to test hypotheses and assess the non-
proportionate importance of each influencing factor. As a special
case, the stochastic version can be converted back to the original
model given that a=b=c=d=e=1.

York et al. (2003) developed an additive regression model in
which all variables are in logarithmic form, facilitating estimation and
hypothesis testing. York et al. (2003) and Wei (2011) argued that in
the typical application of the STIRPAT model, T should be included in
the error term, rather than separately estimated, for consistency with
the IPAT model, where T is solved to balance I, P, and A. The modified
STIRPAT model is expressed as follows:

lnI ¼ lnaþ b lnPð Þ þ c lnAð Þ þ e: ð3Þ

According to the concept of ecological elasticity (York et al., 2003),
coefficients b and c from Eq. (3) are the population and affluence
elasticities, respectively. These elasticities refer to the responsiveness
or sensitivity of environmental impacts to changes in corresponding
impact factors. For instance, coefficient b indicates percentage change
in I in response to a 1% change in population, with other factors held
constant.

To comprehensively observe the impact of population on carbon
emissions, we incorporate the indicators of population structure,
including urbanization level, age structure, and household size, into
the STIRPAT model to come up with the following expanded form:

lnI ¼ lnaþ bs lnPsð Þ þ bc lnPuð Þ þ ba lnPwð Þ þ bf lnPhð Þ þ c lnAð Þ þ e;

ð4Þ

where

– I refers to carbon emissions;
– Ps denotes population size;
– Pu, Pw, and Ph are the three factors that indicate population

structure; that is, Pu for urbanization rate, Pw for the proportion of
working age (16–64 years old) population, and Ph for household size,
which is indicated by the average number of household members;

– A represents per capita annual expenditure;
– e is a residual term.

3. Data description and data testing

3.1. Data description

The population, consumption, and carbon emissions in China from
1978 to 2008 are summarized in Table 1. Data on carbon emissions
from fossil fuels and cement come from the data center of the Carbon
Dioxide Information Analysis Center of Oak Ridge National Laboratory,
USA (CDIAC, 2011). Population and consumption data are obtained
from theChina Statistical Yearbook, released by China's National Bureau
of Statistics. Expenditure data are adjusted tofit thefixed prices in 2000.

Fig. 1 shows the changing rates of all the variables, with 1978 as
the base year. Almost all the variables were non-stationary, with a
continuous uptrend or downtrend during the period. Among all the
variables, per capita expenditure presented the fastest growth at 8.17
times, followed by carbon emissions (3.72 times) and urbanization
rate (1.55 times). Population size and proportion of working age
population increased by 37.96% and 22.35%, respectively. Average
household size showed a continuous shrinking trend, decreasing by
32.24% over the period.

Taking the logarithm of data can reduce non-stationarity, as well as
linearize variables, so that the disadvantage presented by variables having
different measurement units is eliminated; thus, all the data used in the
current work are transformed into natural logarithmic series.
3.2. Stationarity test

The acceptability of a regression result is commonly based on the
premise that the series used in the regression model are stationary or
co-integrated if the series are non-stationary; otherwise inauthentic
regression may occur. Furthermore, multicollinearity among indepen-
dent variables can cause large variances in estimated coefficients and
decrease the accuracy of estimated equations; a multicollinearity test
should be performed on independent variables.

The augmented Dickey–Fuller (ADF) unit root test is typically used
to examine the stationarity of time series, in which a high-order
autoregressive model with an intercept term is established (Maddala
and Kim, 1998). Taking the ADF test on series lnI as an example, we
express the test equation with the constant term, as well as the trend
and intercept terms, as follows:

Δ lnIt ¼ α þ βt þ δ lnIt−1 þ
Xk

i¼1

βiΔ lnIt−i þ εt ; ð5Þ

where α, β, and δ are coefficients; ε is a residual term; and k is the lag
length, which turns the residual term into a stochastic variable.

The null hypothesis H0 is δ=0; i.e., at least one unit root exists,
causing the non-stationarity of the series. The test is conducted with
three formulations: (α≠0, β≠0), (α=0, β≠0), and (α=0, β=0).
As long as one of the three models rejects the null hypothesis, the
series are considered stationary. However, when the results of all the
three models do not reject the null hypothesis, the series are regarded
as non-stationary.

The results of the stationary test on all the series are summarized
in Table 2.

According to the results, series lnPu, lnPw, lnPh, and lnA are I (0) or
stationary. Series lnPs and lnI are I (1), indicating that they are first-order
integrated series. Hence, the co-integration between the two seriesmust
be examined to determine whether they satisfy the precondition of
regression analysis.

3.3. Co-integration test

Series lnPs and lnI are both I (1); thus, they satisfy the precondition
of the same integrated order for conducting a bivariate co-integration
test. On the basis of the Engle–Granger testmethod (Engle and Granger,
1987), we express the co-integration regression equation as

lnIt ¼ α þ β lnPst þ εt : ð6Þ

Denoting the estimated regression coefficients of Eq. (8) as α̂ and
β̂ , the estimated residual series is then expressed as follows:

ε̂ ¼ lnIt−α̂−β̂ lnPst : ð7Þ

If ε̂ is I (0), then lnI and lnPs are co-integrated.
Coefficients α̂ and β̂ are estimated by ordinary least squares (OLS),

and then the unit root test is performed on estimated residual series ε̂
using the ADF test method. The results are shown in Table 3.

Table 3 shows that the calculated ADF t-statistic of series ε̂ was
−1.8455, which is less than the critical value at the 10% significance
level. Hence, the result rejects the null hypothesis, indicating that
series ε̂ without a unit root is stationary; i.e., ε̂ is I (0). Therefore,
series lnI and lnPs are co-integrated.

We examine the Granger causality between series lnI and lnPs. The
bivariant regressionmodels for the Granger causality test are expressed
as follows:

lnIt ¼ α0 þ
Xk

i¼1

αi lnIt−i þ
Xk

i¼1

βi lnPst−i; ð8Þ



Table 1
Population, consumption, and carbon emissions in China (1978–2008).

Year Carbon emissions
(MtC)a

Population
size (104)

Urbanization
rate (%)

Proportion of working
age population (%)

Household size
(person/household)

Per capita
expenditure (CNY)

1978 40,768.9 96,259 17.92 59.50 4.66 740
1979 41,648.9 97,542 18.96% 60.00% 4.65 791
1980 40,698.6 98,705 19.39% 60.50% 4.61 862
1981 40,292.5 100,072 20.16% 61.00% 4.54 934
1982 43,122.8 101,654 21.13% 61.50% 4.51 997
1983 45,468.6 103,008 21.62% 62.37% 4.46 1079
1984 49,433.6 104,357 23.01% 63.24% 4.41 1207
1985 53,587.3 105,851 23.71% 64.12% 4.33 1370
1986 56,348.0 107,507 24.52% 64.99% 4.24 1435
1987 60,123.0 109,300 25.32% 65.86% 4.15 1520
1988 64,445.3 111,026 25.81% 66.15% 4.05 1638
1989 65,473.6 112,704 26.21% 66.45% 3.97 1635
1990 65,855.4 114,333 26.41 66.74 3.93 1695
1991 69,147.7 115,823 26.94 66.30 3.89 1842
1992 72,143.5 117,171 27.46 66.20 3.85 2086
1993 77,019.8 118,517 27.99 66.70 3.81 2262
1994 81,807.1 119,850 28.51 66.60 3.78 2367
1995 88,471.7 121,121 29.04 67.20 3.74 2553
1996 92,597.1 122,389 30.48 67.20 3.72 2793
1997 91,486.8 123,626 31.91 67.50 3.64 2919
1998 86,614.1 124,761 33.35 67.60 3.63 3091
1999 90,501.7 125,786 34.78 67.70 3.58 3346
2000 92,886.8 126,743 36.22 70.15 3.44 3632
2001 95,144.0 127,627 37.66 70.40 3.42 3855
2002 100,957.7 128,453 39.09 70.30 3.39 4125
2003 118,724.4 129,227 40.53 70.40 3.38 4415
2004 139,067.5 129,988 41.76 70.92 3.31 4773
2005 153,424.4 130,756 42.99 72.04 3.24 5142
2006 166,458.9 131,448 43.90 72.32 3.17 5636
2007 180,165.9 132,129 44.94 72.53 3.17 6239
2008 192,268.7 132,802 45.68 72.80 3.16 6782

Sources: The carbon emission data are obtained from the CDIAC (2011); the data on population and consumption are from the China Statistical Yearbook, with some interpolation
for the missing data on working age population for several years in the 1980s; the expenditure data are adjusted to fit the fixed prices in 2000.

a MtC refers to million-ton carbon
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lnPst ¼ α0 þ
Xk

i¼1

αi lnPst−i þ
Xk

i¼1

βi ln It−i: ð9Þ

The null hypothesis is β1=β2=…=βk=0 given that the maximal
lag length is k=2. The test results are shown in Table 4.

The first hypothesis states that series lnPs is not the Granger cause
of series lnI; the concomitant significance of this hypothesis was
0.1619, suggesting that lnPs is the Granger cause of lnI, with 83.81%
significance. The concomitant significance for the second hypothesis
was 0.8752, indicating that lnI is not the Granger cause of lnPs.
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Fig. 1. Changing rates of population, consumption, and carbon emissions in China
(1978–2008). Sources: same as in Table 1.
3.4. Multicollinearity test

Multicollinearity refers to a situation in which two or more
independent variables in amultiple regressionmodel are highly linearly
related (Donald and Robert, 1967). In this situation, the standard errors of
the affected coefficients tend to be large, and the coefficient estimates
may change erratically in response to small changes in data. Such erratic
changes result in the possible failure of the regression model to provide
valid results on individual variables.

The multicollinearity of the independent variables in the model
is examined by OLS regression and by valuing the variance inflation
factors (VIFs) of the variables. Taking the test on multicollinearity
among lnPs and the other variables as an example, we use the OLS
method to regress lnPs on the other independent variables. As shown in
Table 5, the estimated coefficient of determination (R2) of the model
was 0.9803 and the F-test was highly significant, with an F-statistic of
323.8751 at the 0.1% significance level. The VIFs of the variables ranged
from 29.6551 to 173.5764, which are considerably greater than 10.
Given that Marquardt (1970) used a VIF greater than 10 as a guideline
for severe multicollinearity, we can conclude that a high degree of
Table 2
Results of the stationary test using the ADF test.

Variable Difference
order

Exogenous
(α, β, k)

t-Statistic Significance
level

Test critical
value

Verdict

lnPs 1 (α, β, 1) −3.7195 5% −3.5806 I (1)
lnPu 0 (0, 0, 1) −2.9440 1% −2.6471 I (0)
lnPw 0 (0, 0, 1) −3.2563 1% −2.6471 I (0)
lnPh 0 (0, 0, 1) −4.0599 1% 2.6471 I (0)
lnA 0 (α, β, 1) −3.2983 10% −3.2217 I (0)
lnI 1 (α, 0, 4) −3.2972 5% −2.9862 I (1)



Table 5
Multicollinearity test on lnPs and other independent variables by OLS.

Adjusted R2 0.9803
Standard error 0.0155
F-statistic 323.8751⁎⁎⁎

lnPs Coefficient t-Statistic VIF

lnPu −0.2706⁎ −2.4252 120.7909
(0.1116)

lnPw 0.3378 1.2749 29.6551
(0.2650)

lnPh −0.5381⁎ −2.3791 100.8291
(0.2262)

lnA 0.1383⁎ 2.4129 173.5764
(0.0573)

Constant 11.1249⁎⁎⁎ 15.3781
(0.7234)

Standard errors are in parentheses.
⁎⁎⁎ pb0.001 (two-tailed test).

⁎ pb0.05 (two-tailed test).

0

0.5

1

1.5

2

2.5
lnPs

lnPu

lnPw

lnPh

lnA

rm
al

iz
ed

 c
oe

ff
ic

ie
nt

Table 3
Results of the unit root test on ε̂ .

Significance t-Statistic Probability

ADF test statistic −1.8455 0.0626
Test critical values: 1% level −2.6471

5% level −1.9529
10% level −1.6100
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multicollinearity exists among lnPs and the other independent
variables in Eq. (4).

The same multicollinearity test was performed on the other
independent variables; all the results indicate a high degree of
multicollinearity among these variables.

4. Regression estimation

4.1. Ridge regression

The danger of multicollinearity primarily stems from its generation of
large standard errors among related independent variables; these errors
are characterized by large variances in model parameters, making the
model unstable. Given that these standard errors are significantly reduced
using a curtainmethod, the negative consequences of such errors can be
effectively eliminated even when multicollinearity remains in the
model. Ridge regression, which can obtain acceptably biased estimates
with smaller mean square errors in independent variables through
tradeoffs in bias–variance, is one of the most effective solutions for
multicollinearity.

Hoerl and Kennard (1970) explicitly specified the estimation
procedure for ridge regression as an improved substitute for traditional
OLS regression. Consider the standard model for multiple linear
regression,

Y ¼ Xβ þ ε; ð10Þ

where X is (n×p) and is of rank p, β is (p×1) and unknown, E [ε]=0,
and E [εε′]=δ2I. The unbiased estimate of β is normally given by

β̂ ¼ X′Xð Þ−1X′Y: ð11Þ

When a high degree of multicollinearity exists among X, the X′X
matrix is ill-conditioned; i.e., the value of its determinant |X′X|≈0,
and attempts to calculate the (X′X)−1 matrix may be highly sensitive to
slight variations in data. In controlling the inflation and general instability
associated with least squares estimates, as well as in estimating β, the
ridge regression that incorporates small positive quantity k to the
diagonal of normalized independent variable matrix X′X uses

β̂� ¼ X′X þ kIð Þ−1X′Y : ð12Þ

This equation creates a variance in parameter estimates that is less
than that estimated by OLS regression under the condition k≥0.

Therefore, choosing an appropriate k, accepting minimal bias, and
substantially reducing variance are possible, thereby remarkably
improving estimation. Ridge regression can be converted back to OLS
regression as a special case given that k=0 (Hoerl and Kennard, 1970).
Table 4
Results of the Granger causality test on lnI and lnPs.

Null hypothesis: Obs F-statistic Probability

lnPs is not the Granger cause of lnI 29 1.9663 0.1619
lnI is not the Granger cause of lnPs 0.1340 0.8752
Considering that the relationship of a ridge estimate to an ordinary
estimate is given as

β̂� ¼ I þ k X′Xð Þ−1
h i−1

β̂ ; ð13Þ

we can derive the expression for estimating the bias introduced when
β̂� is used rather than β̂ as follows:

bias ¼ I þ k X′Xð Þ−1
h i−1���

���: ð14Þ

4.2. Estimation results

The ridge traces estimated for the expanded STIRPAT model are
shown in Fig. 2. The results for all the estimated normalized coefficients
are summarized in Table 6.

As shown in Fig. 2, when k=0.20, the coefficients of the indepen-
dent variables tend to be stable. In this situation, the model exhibited a
high goodness-of-fit, with an adjusted coefficient of determination
(R2) of 0.9454. The F-test of themodel was highly significant, with an
F-statistic of 104.8277 at the 0.1% significance level. All the estimated
coefficients passed the significance tests with t-statistic at the 0.1%
significance level. The VIFs of the estimated coefficients ranged from
0.1704 to 0.4791, all much lower than 10. The bias introduced was
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Fig. 2. Ridge trace estimated for Eq. (4).



Table 6
Ridge regression results of Eq. (4).

k 0.2000
Adjusted R2 0.9454
Standard error 0.1067
F-statistic 104.8277⁎⁎⁎

Bias 0.0979

Variable Non-normalized
coefficient

Normalized
coefficient

t-Statistic VIF

lnPs 0.5543⁎⁎⁎ 0.1245 4.5329 0.4144
(0.1223)

lnPu 0.3334⁎⁎⁎ 0.2029 9.5369 0.2486
(0.0350)

lnPw 1.3210⁎⁎⁎ 0.1678 5.6796 0.4791
(0.2326)

lnPh −0.7823⁎⁎⁎ −0.2146 −12.1808 0.1705
(0.0642)

lnA 0.1646⁎⁎⁎ 0.2339 13.2784 0.1704
(0.0124)

Constant 5.5205⁎⁎⁎ 3.7809
(1.4601)

Standard errors are in parentheses.
⁎⁎⁎ pb0.001 (two-tailed test).
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0.0979, which is acceptable for the estimates. Thus, the estimation is
considered satisfactory, with a robust explanatory power for Eq. (4).

5. Discussion

Table 6 lists the contributions of the impact factors on carbon
emissions in terms of the absolute value of the normalized coefficients.
The impact factors are ranked in descending order as follows: per capita
expenditure, with a contribution ratio of 23.39%; household size, with
21.46%; urbanization rate, with 20.29%; proportion of working age
population, with 16.78%; and population size, with 12.45%. On the basis
of these results, we conclude that the effects of changes in residential
consumption and population structure on carbon emissions in China
over the studied period exceeded those of population size.

5.1. Residential consumption

According to the estimated equation, the impact of changes in per
capita expenditure on carbon emissions in China was higher than that
of the other factors considered in the model.

Table 1 and Fig. 1 illustrate that the residential consumption level
in China maintained continuous growth from 1978 to 2008. In terms
of the fixed prices in 2000, the per capita expenditure rose 8.17 times
fromCNY740 to CNY 6782,with an annual average growth rate of 7.67%.
This rate was higher than those of the other variables investigated.

As an important indicator of the affluence of residents, consump-
tion level affects carbon emissions through two main channels. The
first is through direct emissions from household energy require-
ments, including cooking, hot water use, and heating. The second is
via indirect emissions from non-energy residential consumption
goods and services, which emit carbon during, rather than after, the
production process. The impacts of human behavior on carbon
emissions are primarily manifested in production and consumption
behaviors. This observation indicates that to satisfy consumption
demands, people createwealth for society by participating in production
activities, leading to inevitable emissions in a specific stage restricted to
the level of productivity and resource endowment. In this sense, carbon
emissions can be considered an indicator of social and economic
development in a particular historical period. Hence, a high correlation
between consumption level and carbon emissions is expected.

Nevertheless, the impact of changes in consumption structure on
carbon emissions should not be disregarded. Marked by an increasing
proportion of service consumption and a decreasing proportion of
product consumption, China exhibited a significantly improved residen-
tial consumption pattern during the studied period (Wei et al., 2007).
The relationship between consumption level and carbon emissions is not
a simple linear correlation because the carbon emission intensity of each
type of residential good or service differs, and the improvement in
production technology and energy structure constantly varies. These
factors partly explain the growth rate of carbon emissions being lower
than the consumption level in China during the reviewed period, with
the elasticity of per capita expenditure at only 0.16.

5.2. Population size

Table 1 and Fig. 1 show that from 1978 to 2008, the population
increased from 0.963 billion to 1.328 billion, which is equivalent to an
increase of 37.96%. The results of the Granger causality test (Table 4)
suggest that the logarithmic variable of population size is the Granger
cause of carbon emissions, with 83.81% significance. The regression
estimation of the model shows that the elasticity of carbon emissions
in relation to population size from 1978 to 2008 was 0.55. Compared
with the similar global-level elasticities assessed by Shi (2003), Cole and
Neumayer (2004), and Rosa et al. (2004), the impact of population size
on carbon emissions in China during this periodwas considerably lower
than the global average level, despite some differences among the
variables and periods investigated in these studies. The lower impact
of population size implies that during the period reviewed in the
current work, population growth was not the major impact factor.

Population growth does not necessarily result in the inevitable
intensification of environmental pressure. The consequences of popu-
lation growth continue to be debated. In our opinion, the complexity of
the relationship between population and the environment presents
difficulties in resolving such controversial issues. First, a close mutual
relationship exists between population growth and environmental
pressure; i.e., population growth influences natural resources and the
ecosystem, and vice versa. Second, these two factors usually interact
with each other indirectly throughhumanproduction and consumption
behaviors, which are in turn influenced by social and economic factors,
including productive relations, industrial policy, and resource endow-
ment. Third, even population growth itself reflects different structural
patterns, manifesting in varying age structures, gender compositions,
and geographical distributions. Thus, comprehensively investigating
the effects of the changes in population structure, rather thanonly those
in population size, is necessary. Such studies should also include an
analysis of the social and economic factors that affect environmental
pressure. The next section describes these issues in detail.

5.3. Urbanization

Our results reveal that the urbanization of the population was key
to the increase in carbon emissions in China, with an urbanization
elasticity of 0.33.

As shown in Table 1 and Fig. 1, the urbanization rate of China's
population rose from 17.92% to 45.68% in 1978 to 2008, with a yearly
average increase of nearly one percentage point. A significant disparity
in production and consumption levels exists between urban and rural
areas because of the specialized urban–rural dualistic structure of China.
Statistics show that for nearly a decade, the per capita expenditure of
urban residents remained 3.5 times higher than that of rural residents.
The rising urbanization rate primarily reflects improving production
and consumption levels; urban residents would have been responsible
for the large impact on the carbon emissions in China during the studied
period.

Nevertheless, urbanization partly alleviates environmental pressure.
Through intensive development, urbanization can improve energy use
efficiency and pollution treatment through assembly and scale effects.
These effects, in turn, mitigate the scarcity of energy resources and
damage to the environment. According to the estimated urbanization
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rate elasticity, the carbon emission-promoting effect of urbanization
in China in the last three decades was considerably higher than its
alleviative effect.

5.4. Age structure

Our research shows that changes in population age structure visibly
influenced the carbon emissions in China during the reviewed period,
with the elasticity of working age population proportion being 0.33.

Changes in population age structure exert an indirect effect on
carbon emissions, mainly by influencing production and consumption
patterns. In terms of production, the continuous increase in labor
force drove the rapid economic growth of China. The high correlation
between carbon emissions and economic growth in the country partly
explains the impact of the changes in age structure on emissions.

With respect to consumption, themechanismof influence of changes
in age structure remains complicated. From a micro perspective and
according to the life cycle hypothesis (Modigliani and Brumberg, 1954),
people optimally allocate their expected total lifetime income to
different stages of lifetime to maximize inter-temporal utility. Hence,
the growth in the proportion of labor force in a population would result
in an increased total savings rate and lower total consumption rate.
From a macro perspective, Dalton et al. (2008) found that an aging
population would present inhibitory effects on carbon emissions in the
long run. Given that working age population continues to increase
and the capital stock allocated for each person remains fixed, part
of consumption would be transformed to investments, resulting in
decreased per capita consumption.

Table 1 and Fig. 1 demonstrate that the proportion of working age
population in China rose by 13.3 percentage points, from 59.5% to 72.8%
over 1978–2008. Meanwhile, statistics show that the proportion of the
aging population significantly increased during this period, while that of
children decreased. In terms of production and consumption, the aging
population may have exerted some inhibitory effects on consumption
and associated emissions; the adequate labor supply primarily accounted
for the impact of change in age structure on carbon emissions in China in
the last three decades.

5.5. Household size

The results of our estimated model show that shrinking household
size significantly influenced carbon emissions in China during the
reviewed period, with household size elasticity being −0.78.

The average household size in China from 1978 to 2008 continued
to shrink from 4.66 persons to 3.16 persons, a decrease of 32.24%
(Table 1 and Fig. 1). By approximate calculation, the total number of
households increased by 1.04, which is much higher than the growth
rate of population size in China during the studied period. Given that
the consumption demand based on households includes numerous
shared goods and services, the reduction in household size indicates
the weakness of the scale effect on household consumption, resulting
in the increase in per capita consumption. Meanwhile, given a steady
growing population, the reduction in household sizewill lead to a faster
increase in the total number of households, causing the increase in
household-based consumption demand to exceed that in individual-
based demand. These factors explain why our estimate of the absolute
value of household size is larger than that of population size. It also
implies that households, rather than individuals, are a more reasonable
explanation for the demographic impact on emissions.

6. Conclusion and policy implications

Expanding the STIRPATmodel and using the ridge regressionmethod,
we examined the impacts of population size, population structure, and
consumption level on carbon emissions in China from 1978 to 2008. We
used the ridge regression method to rectify the negative influence of
multicollinearity among the independent variables under acceptable
bias. Changes in consumption level and population structure were
the two major factors that affected carbon emissions, not population
size.

China has long emphasized energy conservation and emission
reduction in industrial fields. Residential consumption rates have
continued to decline in recent decades. Thus, the effect of residential
consumption on carbon emissions seems unimportant. However, our
study shows that the impact of changes in consumption level on carbon
emissions in Chinawas higher than those of the other factors considered
in the model. With the implementation of policies for stimulating
domestic demand as a way of coping with the international financial
crisis, the impact of residential consumption on carbon emissions in
China may significantly increase in the future. Therefore, policymakers
should find a way to control emissions without sacrificing standards
of living. As previously stated, the relationship between consump-
tion level and carbon emissions is not a simple linear correlation; this
relationship is influenced by consumption structure, production tech-
nology, and energy structure, creating an opportunity for gradually
decoupling the synchronism between the growing consumption level
and increasing carbon emissions in China in the future.

Considering that the natural growth rate of the population in China
has continued to decline for more than 30 years, a policy that more
aggressively reduces population size is no longer feasible. Given its
substantial population base, however, China has seen a yearly increase
in average population ofmore than 7 million since the beginning of this
century; the population will continue to increase by about 100 million
in the next two decades (Peng, 2011). The elasticity of emissions in
relation to population size (as estimated in ourmodel)wasmaintained;
thus, carbon emissions in China will continue on a growth trend for the
next two decades. Our study reveals that changes in population structure
played amore important role thandid those in population size. Therefore,
policies that respond to changes in urbanization level, age structure, and
household size should be seriously considered.

The overall demographic urbanization level in the country currently
remains lower than the global average level, and it has not matched the
corresponding level of industrial development. We can therefore expect
China to continue to undergo urbanization in the next several decades,
and the pressure of emission increase to grow stronger and last longer. In
the last three decades, the principle underlying China's urbanization
policy has changed from “control the scale of large cities, rationally
develop medium cities, and actively develop small towns” to “develop
large, medium, and small cities in a synchronized manner and form
city groups with large radiation effects.” This conversion reflects the
awareness of the vital function of concentrating the use of resources
and environmental treatment in large-scale or medium-scale cities.
Policymakers should more strongly emphasize the assembly and
scale effects of cities to reduce emissions and initiate low carbon
development.

The proportion of working age population in China peaked around
2010, indicating that the window of opportunity for the country's
“demographic bonus” is in its closing process, and that the trend of
population aging will be the major characteristic of China's age
structure in the future. Given this backdrop, our results imply that
changes in age structure will present an alleviation-dominant impact
on carbon emissions in the future. This impact will significantly differ
from the influence of age structure in the last three decades, which was
characterized by an adequate supply of labor force. This preliminary
evaluation promotes cautious optimism regarding the future trends of
residential carbon emissions in China.

The reduction trend of household sizewas accompanied by social and
economic development partly because of the implementation of the
family planning policy in the country and the influence of urbanization on
rural families. With modernization and urbanization, China's household
size will continue to decrease, and using households in explaining the
impact on carbon emissions will be an even more effective approach.
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Thus, policies regarding residential consumption will extensively
influence carbon emission trends. Policymakers should immediately
initiate overall planning for population development and residential
consumption by establishing the necessary assessment frameworks
and guidance systems that promote low carbon development in China.
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